Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662498

RESUMO

Non-biting midges (family Chironomidae) are found throughout the world in a diverse array of aquatic and terrestrial habitats, can often tolerate harsh conditions such as hypoxia or desiccation, and have consistently compact genomes. Yet we know little about the shared molecular basis for these attributes and how they have evolved across the family. Here, we address these questions by first creating high-quality, annotated reference assemblies for Tanytarsus gracilentus (subfamily Chironominae, tribe Tanytarsini) and Parochlus steinenii (subfamily Podonominae). Using these and other publicly available assemblies, we created a time-calibrated phylogenomic tree for family Chironomidae with outgroups from order Diptera. We used this phylogeny to test for features associated with compact genomes, as well as examining patterns of gene family evolution and positive selection that may underlie chironomid habitat tolerances. Our results suggest that compact genomes evolved in the common ancestor of Chironomidae and Ceratopogonidae, and that this occurred mainly through reductions in non-coding regions (introns, intergenic sequences, and repeat elements). Significantly expanded gene families in Chironomidae included biological processes that may relate to tolerance of stressful environments, such as temperature homeostasis, carbohydrate transport, melanization defense response, and trehalose transport. We identified several positively selected genes in Chironomidae, notably sulfonylurea receptor, CREB-binding protein, and protein kinase D. Our results improve our understanding of the evolution of small genomes and extreme habitat use in this widely distributed group.

2.
Environ Entomol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574195

RESUMO

Eastern subterranean termites, Reticulitermes flavipes (Kollar), are widely distributed across North America where they are exposed to a broad range of environmental conditions. However, mechanisms for overwintering are not well understood. Wisconsin is a unique location to study mechanisms of cold tolerance as it represents the northern boundary for persistent R. flavipes populations. In this study, we evaluated seasonal shifts in cold tolerance using critical thermal minimum (CTmin) and supercooling point (SCP) and examined how these measurements correlate to changes in the microbial community of the termite gut. Results showed seasonal acclimatization to cold, which is consistent with the use of behavioral freeze-avoidant mechanisms. However, these insects also demonstrated an increased susceptibility to freezing later in the season, which may be tied to changes in gut microbiota. Our results found shifts in the composition of the gut microbiome in R. flavipes between mid- to late summer and early to late fall. These differences may be suggestive of a change in metabolism to adjust to a period of reduced feeding and increased metabolic stress during overwintering. Specifically, results showed an increased abundance of Methanobrevibacter sp. (Euryarchaeota) associated with cold, which may be indicative of a metabolic shift from acetogenesis to methanogenesis associated with overwintering. Further work is needed focusing on specific contributions of certain gut microbes, particularly their role in metabolic adaptability and in providing protection from oxidative stress associated with changes in environmental conditions.

3.
J Evol Biol ; 37(1): 62-75, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285658

RESUMO

Associating with plant hosts is thought to have elevated the diversification of insect herbivores, which comprise the majority of global species diversity. In particular, there is considerable interest in understanding the genetic changes that allow host-plant shifts to occur in pest insects and in determining what aspects of functional genomic diversity impact host-plant breadth. Insect chemoreceptors play a central role in mediating insect-plant interactions, as they directly influence plant detection and sensory stimuli during feeding. Although chemosensory genes evolve rapidly, it is unclear how they evolve in response to host shifts and host specialization. We investigate whether selection at chemosensory genes is linked to host-plant expansion from the buffalo burr, Solanum rostratum, to potato, Solanum tuberosum, in the super-pest Colorado potato beetle (CPB), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). First, to refine our knowledge of CPB chemosensory genes, we developed novel gene expression data for the antennae and maxillary-labial palps. We then examine patterns of selection at these loci within CPB, as well as compare whether rates of selection vary with respect to 9 closely related, non-pest Leptinotarsa species that vary in diet breadth. We find that rates of positive selection on olfactory receptors are higher in host-plant generalists, and this signal is particularly strong in CPB. These results provide strong candidates for further research on the genetic basis of variation in insect chemosensory performance and novel targets for pest control of a notorious super-pest.


Assuntos
Besouros , Solanum tuberosum , Animais , Besouros/genética , Solanum tuberosum/genética , Genômica , Dieta , Colorado
4.
Environ Entomol ; 52(6): 1162-1171, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823556

RESUMO

Agricultural insect herbivores show a remarkable ability to adapt to modern agroecosystems, making them ideal for the study of the mechanisms underlying rapid evolution. The mobilization of transposable elements is one mechanism that may help explain this ability. The Colorado potato beetle, Leptinotarsa decemlineata, is a highly adaptable species, as shown by its wide host range, broad geographic distribution, and tolerance to insecticides. However, beetle populations vary in insecticide tolerance, with Eastern US beetle populations being more adaptable than Western US ones. Here, we use a community ecology approach to examine how the abundance and diversity of transposable elements differs in 88 resequenced genomes of L. decemlineata collected throughout North America. We tested if assemblages and mobilization of transposable elements differed between populations of L. decemlineata based on the beetle's geography, host plant, and neonicotinoid insecticide resistance. Among populations of North American L. decemlineata, individuals collected in Mexico host more transposable elements than individuals collected in the United States. Transposable element insertion locations differ among geographic populations, reflecting the evolutionary history of this species. Total transposable element diversity between L. decemlineata individuals is enough to distinguish between populations, with more TEs found in beetles collected in Mexico than in the United States. Transposable element diversity does not appear to differ between beetles found on different host plants, or relate to different levels of insecticide resistance.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Elementos de DNA Transponíveis , Inseticidas/farmacologia , Neonicotinoides , Resistência a Inseticidas/genética
5.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37461625

RESUMO

Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.

6.
Sci Adv ; 9(12): eabq3713, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947619

RESUMO

Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.


Assuntos
Borboletas , Traços de História de Vida , Animais , Feminino , Filogenia , Borboletas/genética , Estudo de Associação Genômica Ampla , Evolução Biológica
7.
Mol Ecol ; 32(6): 1425-1440, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36591939

RESUMO

Structural variation has been associated with genetic diversity and adaptation. Despite these observations, it is not clear what their relative importance is for evolution, especially in rapidly adapting species. Here, we examine the significance of structural polymorphisms in pesticide resistance evolution of the agricultural super-pest, the Colorado potato beetle, Leptinotarsa decemlineata. By employing a parent offspring trio sequencing procedure, we develop highly contiguous reference genomes to characterize structural variation. These updated assemblies represent >100-fold improvement of contiguity and include derived pest and ancestral nonpest individuals. We identify >200,000 structural variations, which appear to be nonrandomly distributed across the genome as they co-occur with transposable elements and genes. Structural variations intersect with exons in a large proportion of gene annotations (~20%) that are associated with insecticide resistance (including cytochrome P450s), development, and transcription. To understand the role structural variations play in adaptation, we measure their allele frequencies among an additional 57 individuals using whole genome resequencing data, which represents pest and nonpest populations of North America. Incorporating multiple independent tests to detect the signature of natural selection using SNP data, we identify 14 genes that are probably under positive selection, include structural variations, and SNPs of elevated frequency within the pest lineages. Among these, three are associated with insecticide resistance based on previous research. One of these genes, CYP4g15, is coinduced during insecticide exposure with glycosyltransferase-13, which is a duplicated gene enclosed within a structural variant adjacent to the CYP4g15 genic region. These results demonstrate the significance of structural variations as a genomic feature to describe species history, genetic diversity, and adaptation.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Evolução Molecular
8.
Curr Opin Insect Sci ; 55: 101000, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521782

RESUMO

Despite considerable research, efforts to manage insecticide resistance continue to fail. The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), epitomizes this problem, as it has repeatedly and rapidly evolved resistance to>50 insecticides. The patterns of resistance evolution are intriguing, as they defy models where resistance evolves from rare mutations. Here, we synthesize recent research on insecticide resistance in CPB showing that polygenic resistance drawn from standing genetic diversity explains genomic patterns of insecticide resistance evolution. However, rapid gene regulatory evolution suggests that other mechanisms might also facilitate adaptive change. We explore the hypothesis that sublethal stress from insecticide exposure could alter heritable epigenetic modifications, and discuss the range of experimental approaches needed to fully understand insecticide resistance evolution in this super pest.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Regulação da Expressão Gênica
9.
Evol Appl ; 15(10): 1691-1705, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330305

RESUMO

Pesticide resistance provides one of the best examples of rapid evolution to environmental change. The Colorado potato beetle (CPB) has a long and noteworthy history as a super-pest due to its ability to repeatedly develop resistance to novel insecticides and rapidly expand its geographic and host plant range. Here, we investigate regional differences in demography, recombination, and selection using whole-genome resequencing data from two highly resistant CPB populations in the United States (Hancock, Wisconsin and Long Island, New York). Demographic reconstruction corroborates historical records for a single pest origin during the colonization of the Midwestern and Eastern United States in the mid- to late-19th century and suggests that the effective population size might be higher in Long Island, NY than Hancock, WI despite contemporary potato acreage of Wisconsin being far greater. Population-based recombination maps show similar background recombination rates between these populations, as well as overlapping regions of low recombination that intersect with important metabolic detoxification genes. In both populations, we find compelling evidence for hard selective sweeps linked to insecticide resistance with multiple sweeps involving genes associated with xenobiotic metabolism, stress response, and defensive chemistry. Notably, only two candidate insecticide resistance genes are shared among both populations, but both appear to be independent hard selective sweep events. This suggests that repeated, rapid, and independent evolution of genes may underlie CPB's pest status among geographically distinct populations.

10.
Integr Comp Biol ; 62(6): 1827-1837, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36036479

RESUMO

Despite extensive research on agricultural pests, our knowledge about their evolutionary history is often limited. A mechanistic understanding of the demographic changes and modes of adaptation remains an important goal, as it improves our understanding of organismal responses to environmental change and our ability to sustainably manage pest populations. Emerging genomic datasets now allow for characterization of demographic and adaptive processes, but face limits when they are drawn from contemporary samples, especially in the context of strong demographic change, repeated selection, or adaptation involving modest shifts in allele frequency at many loci. Temporal sampling, however, can improve our ability to reconstruct evolutionary events. Here, we leverage museum samples to examine whether population genomic diversity and structure has changed over time, and to identify genomic regions that appear to be under selection. We focus on the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say 1824; Coleoptera: Chrysomelidae), which is widely regarded as a super-pest due to its rapid, and repeated, evolution to insecticides. By combining whole genome resequencing data from 78 museum samples with modern sampling, we demonstrate that CPB expanded rapidly in the 19th century, leading to a reduction in diversity and limited genetic structure from the Midwest to Northeast United States. Temporal genome scans provide extensive evidence for selection acting in resistant field populations in Wisconsin and New York, including numerous known insecticide resistance genes. We also validate these results by showing that known selective sweeps in modern populations are identified by our genome scan. Perhaps most importantly, temporal analysis indicates selection on standing genetic variation, as we find evidence for parallel evolution in the two geographical regions. Parallel evolution involves a range of phenotypic traits not previously identified as under selection in CPB, such as reproductive and morphological functional pathways that might be important for adaptation to agricultural habitats.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Museus , Genômica
11.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044459

RESUMO

Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here, we examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance to insecticides. Using whole-genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, nonmutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit similar levels of nucleotide diversity, relative to nonpest populations, and show evidence of recent expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes, demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of novel control techniques.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Análise de Sequência de DNA , Solanum tuberosum/genética
12.
Zootaxa ; 5052(3): 395-405, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810866

RESUMO

Two new species of Bimastos Moore are described based on morphological and molecular data. Bimastos nanae n. sp. resembles B. lawrenceae Fender, B. zeteki (Smith and Gittins) and B. welchi (Smith). Bimastos nanae n. sp. differs from these species in the position of the clitellum, size and number and position of thickened septa. Bimastos magnum n. sp. is similar to B. schwerti Csuzdi Chang and B. palustris Moore in having a fully annular clitellum and male pores on huge porophores. Bimastos magnum n. sp. differs from both species by having a more posterior position of the clitellum (in xxiv-xxxiii, xxxiv) and larger body size. With the description of these new species, the number of Bimastos species is raised to 14.


Assuntos
Gafanhotos , Oligoquetos , Animais , Região dos Apalaches , Tamanho Corporal , Masculino , América do Norte
13.
Evol Appl ; 14(7): 1747-1761, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295361

RESUMO

How much does natural selection, as opposed to genetic drift, admixture, and gene flow, contribute to the evolution of invasive species following introduction to a new environment? Here we assess how evolution can shape biological invasions by examining population genomic variation in non-native guppies (Poecilia reticulata) introduced to the Hawaiian Islands approximately a century ago. By examining 18 invasive populations from four Hawaiian islands and four populations from the native range in northern South America, we reconstructed the history of introductions and evaluated population structure as well as the extent of ongoing gene flow across watersheds and among islands. Patterns of differentiation indicate that guppies have developed significant population structure, with little natural or human-mediated gene flow having occurred among populations following introduction. Demographic modeling and admixture graph analyses together suggest that guppies were initially introduced to O'ahu and Maui and then translocated to Hawai'i and Kaua'i. We detected evidence for only one introduction event from the native range, implying that any adaptive evolution in introduced populations likely utilized the genetic variation present in the founding population. Environmental association tests accounting for population structure identified loci exhibiting signatures of adaptive variation related to predators and landscape characteristics but not nutrient regimes. When paired with high estimates of effective population sizes and detectable population structure, the presence of environment-associated loci supports the role of natural selection in shaping contemporary evolution of Hawaiian guppy populations. Our findings indicate that local adaptation may engender invasion success, particularly in species with life histories that facilitate rapid evolution. Finally, evidence of low gene flow between populations suggests that removal could be an effective approach to control invasive guppies across the Hawaiian archipelago.

14.
Front Microbiol ; 12: 632715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079527

RESUMO

Understanding the effects of environmental disturbances on insects is crucial in predicting the impact of climate change on their distribution, abundance, and ecology. As microbial symbionts are known to play an integral role in a diversity of functions within the insect host, research examining how organisms adapt to environmental fluctuations should include their associated microbiota. In this study, subterranean termites [Reticulitermes flavipes (Kollar)] were exposed to three different temperature treatments characterized as low (15°C), medium (27°C), and high (35°C). Results suggested that pre-exposure to cold allowed termites to stay active longer in decreasing temperatures but caused termites to freeze at higher temperatures. High temperature exposure had the most deleterious effects on termites with a significant reduction in termite survival as well as reduced ability to withstand cold stress. The microbial community of high temperature exposed termites also showed a reduction in bacterial richness and decreased relative abundance of Spirochaetes, Elusimicrobia, and methanogenic Euryarchaeota. Our results indicate a potential link between gut bacterial symbionts and termite's physiological response to environmental changes and highlight the need to consider microbial symbionts in studies relating to insect thermosensitivity.

15.
Zookeys ; 1044: 41-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183875

RESUMO

The phylogeny of the carabid beetle supertribe Nebriitae is inferred from analyses of DNA sequence data from eight gene fragments including one nuclear ribosomal gene (28S), four nuclear-protein coding genes (CAD, topoisomerase 1, PEPCK, and wingless), and three mitochondrial gene fragments (16S + tRNA-Leu + ND1, COI ("barcode" region) and COI ("Pat/Jer" region)). Our taxon sample included 264 exemplars representing 241 species and subspecies (25% of the known nebriite fauna), 39 of 41 currently accepted genera and subgenera (all except Notiokasis and Archileistobrius), and eight outgroup taxa. Separate maximum likelihood (ML) analyses of individual genes, combined ML analyses of nuclear, nuclear protein-coding, and mitochondrial genes, and combined ML and Bayesian analyses of the eight-gene-fragment matrix resulted in a well-resolved phylogeny of the supertribe, with most nodes in the tree strongly supported. Within Nebriitae, 167 internal nodes of the tree (out of the maximum possible 255) are supported by maximum-likelihood bootstrap values of 90% or more. The tribes Notiophilini, Opisthiini, Pelophilini, and Nebriini are well supported as monophyletic but relationships among these are not well resolved. Nippononebria is a distinct genus more closely related to Leistus than Nebria. Archastes, Oreonebria, Spelaeonebria, and Eurynebria, previously treated as distinct genera by some authors, are all nested within a monophyletic genus Nebria. Within Nebria, four major clades are recognized: (1) the Oreonebria Series, including eight subgenera arrayed in two subgeneric complexes (the Eonebria and Oreonebria Complexes); (2) the Nebriola Series, including only subgenus Nebriola; (3) the Nebria Series, including ten subgenera arrayed in two subgeneric complexes, the Boreonebria and Nebria Complexes, with the latter further subdivided into three subgeneric subcomplexes (the Nebria, Epinebriola, and Eunebria Subcomplexes)); and (4) the Catonebria Series, including seven subgenera arrayed in two subgeneric complexes (the Reductonebria and Catonebria Complexes). A strong concordance of biogeography with the inferred phylogeny is noted and some evident vicariance patterns are highlighted. A revised classification, mainly within the Nebriini, is proposed to reflect the inferred phylogeny. Three genus-group taxa (Nippononebria, Vancouveria and Archastes) are given revised status and seven are recognized as new synonymies (Nebriorites Jeannel, 1941 and Marggia Huber, 2014 = Oreonebria Daniel, 1903; Pseudonebriola Ledoux & Roux, 1989 = Boreonebria Jeannel, 1937; Patrobonebria Bänninger, 1923, Paranebria Jeannel, 1937 and Barbonebriola Huber & Schmidt, 2017 = Epinebriola Daniel & Daniel, 1904; and Asionebria Shilenkov, 1982 = Psilonebria Andrewes, 1923). Six new subgenera are proposed and described for newly recognized clades: Parepinebriola Kavanaugh subgen. nov. (type species: Nebria delicata Huber & Schmidt, 2017), Insulanebria Kavanaugh subgen. nov. (type species: Nebria carbonaria Eschscholtz, 1829), Erwinebria Kavanaugh subgen. nov. (type species Nebria sahlbergii Fischer von Waldheim, 1828), Nivalonebria Kavanaugh subgen. nov. (type species: Nebria paradisi Darlington, 1931), Neaptenonebria Kavanaugh subgen. nov. (type species: Nebria ovipennis LeConte, 1878), and Palaptenonebria Kavanaugh subgen. nov. (type species: Nebria mellyi Gebler, 1847). Future efforts to better understand relationships within the supertribe should aim to expand the taxon sampling of DNA sequence data, particularly within subgenera Leistus and Evanoleistus of genus Leistus and the Nebria Complex of genus Nebria.

16.
Mol Ecol Resour ; 21(6): 2145-2165, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33938156

RESUMO

The hyperdiverse order Coleoptera comprises a staggering ~25% of known species on Earth. Despite recent breakthroughs in next generation sequencing, there remains a limited representation of beetle diversity in assembled genomes. Most notably, the ground beetle family Carabidae, comprising more than 40,000 described species, has not been studied in a comparative genomics framework using whole genome data. Here we generate a high-quality genome assembly for Nebria riversi, to examine sources of novelty in the genome evolution of beetles, as well as genetic changes associated with specialization to high-elevation alpine habitats. In particular, this genome resource provides a foundation for expanding comparative molecular research into mechanisms of insect cold adaptation. Comparison to other beetles shows a strong signature of genome compaction, with N. riversi possessing a relatively small genome (~147 Mb) compared to other beetles, with associated reductions in repeat element content and intron length. Small genome size is not, however, associated with fewer protein-coding genes, and an analysis of gene family diversity shows significant expansions of genes associated with cellular membranes and membrane transport, as well as protein phosphorylation and muscle filament structure. Finally, our genomic analyses show that these high-elevation beetles have endosymbiotic Spiroplasma, with several metabolic pathways (e.g., propanoate biosynthesis) that might complement N. riversi, although its role as a beneficial symbiont or as a reproductive parasite remains equivocal.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Besouros , Evolução Molecular , Genoma de Inseto , Animais , Besouros/genética , Tamanho do Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
17.
J Hered ; 112(4): 367-376, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34009382

RESUMO

How do novel fire regimes and a long history of fire suppression influence species genetic diversity? Genetic diversity provides the raw materials for sustaining viable populations and for allowing adaptation to novel environmental challenges, and at present, few studies address the genetic responses of animals to fire management. Here we study the genetic responses of 2 butterfly species to a landscape gradient of fire timing and severity in Yosemite National Park using a large set of genome-wide single nucleotide polymorphisms (SNPs). Butterflies are important bio-indicators of invertebrate diversity and play important roles in both bottom-up and top-down ecosystem processes, and typically increase in abundance following wildfires, due to an increase in abundance of flowering plants. However, it is not clear how genetic diversity and genetic connectivity of butterflies respond to landscape change following fire, and whether fire management has positive or negative effects. We found evidence to suggest that fire increases genetic diversity and reduces isolation in 2 butterfly species, but that aspects of the fire regime (severity, extent, timing, and frequency) differ in importance depending on the ecology of the specific species. This research is the first study to address fire management impacts on genetic diversity in invertebrates, and the results will allow fire managers to predict that fire reintroduction in protected areas will generally benefit butterfly populations.


Assuntos
Borboletas , Incêndios , Incêndios Florestais , Animais , Borboletas/genética , Ecossistema , Variação Genética
18.
Evol Appl ; 14(2): 360-382, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664782

RESUMO

Key changes in ecological niche space are often critical to understanding how lineages diversify during adaptive radiations. However, the converse, or understanding why some lineages are depauperate and relictual, is more challenging, as many factors may constrain niche evolution. In the case of the insect order Grylloblattodea, highly conserved thermal breadth is assumed to be closely tied to their relictual status, but has not been formerly tested. Here, we investigate whether evolutionary constraints in the physiological tolerance of temperature can help explain relictualism in this lineage. Using a comparative transcriptomics approach, we investigate gene expression following acute heat and cold stress across members of Grylloblattodea and their sister group, Mantophasmatodea. We additionally examine patterns of protein evolution, to identify candidate genes of positive selection. We demonstrate that cold specialization in Grylloblattodea has been accompanied by the loss of the inducible heat shock response under both acute heat and cold stress. Additionally, there is widespread evidence of selection on protein-coding genes consistent with evolutionary constraints due to cold specialization. This includes positive selection on genes involved in trehalose transport, metabolic function, mitochondrial function, oxygen reduction, oxidative stress, and protein synthesis. These patterns of molecular adaptation suggest that Grylloblattodea have undergone evolutionary trade-offs to survive in cold habitats and should be considered highly vulnerable to climate change. Finally, our transcriptomic data provide a robust backbone phylogeny for generic relationships within Grylloblattodea and Mantophasmatodea. Major phylogenetic splits in each group relate to arid conditions driving biogeographical patterns, with support for a sister-group relationship between North American Grylloblatta and Altai-Sayan Grylloblattella, and a range disjunction in Namibia splitting major clades within Mantophasmatodea.

19.
Evol Appl ; 14(3): 746-757, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767749

RESUMO

Insecticide use is pervasive as a selective force in modern agroecosystems. Insect herbivores exposed to these insecticides have been able to rapidly evolve resistance to them, but how they are able to do so is poorly understood. One possible but largely unexplored explanation is that exposure to sublethal doses of insecticides may alter epigenetic patterns that are heritable. For instance, epigenetic mechanisms, such as DNA methylation that modifies gene expression without changing the underlying genetic code, may facilitate the emergence of resistant phenotypes in complex ways. We assessed the effects of sublethal insecticide exposure, with the neonicotinoid imidacloprid, on DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata, examining both global changes in DNA methylation and specific changes found within genes and transposable elements. We found that exposure to insecticide led to decreases in global DNA methylation for parent and F2 generations and that many of the sites of changes in methylation are found within genes associated with insecticide resistance, such as cytochrome P450s, or within transposable elements. Exposure to sublethal doses of insecticide caused heritable changes in DNA methylation in an agricultural insect herbivore. Therefore, epigenetics may play a role in insecticide resistance, highlighting a fundamental mechanism of evolution while informing how we might better coexist with insect species in agroecosystems.

20.
J Exp Biol ; 224(Pt Suppl 1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627458

RESUMO

Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.


Assuntos
Mudança Climática , Fertilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...